Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Hydrogen-bonded 1,2-bis(4-pyridyl)ethylene and maleic acid

Jing Zhang, Xueliang Hou, Weifeng Bu, Lixin Wu,* Ling
Ye, Guangdi Yang and Yuguo Fan

Key Laboratory for Supramolecular Structure and Materials, Jilin University,
Changchun 130023, People's Republic of China
Correspondence e-mail: wulx@mail.jlu.edu.cn

Received 23 April 2002
Accepted 19 September 2002
Online 22 October 2002
The title compound (systematic name: 4,4'-ethylenedipyridinium dimaleate), $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}^{-}$, is a 1:2 adduct of 1,2-bis(4-pyridyl)ethylene (BPE) and maleic acid (MA). The interaction between the two components in the molecular complex is due to intermolecular hydrogen bonding via an $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{O}^{-}$hydrogen bond.

Comment

There is growing interest in the construction of supramolecular assemblies with hydrogen bonds as the building blocks (Aakeroy \& Seddon, 1993; Fredericks \& Hamilton, 1996). An example is the cocrystal of $4,4^{\prime}$-bipyridine with maleic acid (MA), which forms a hydrogen-bonded adduct in a 1:2 molar ratio from acetone, adopting a herring-bone pattern (Chatterjee et al., 1998). In this paper, we report the structural variation arising in such a complex due to the replacement of 4,4'-bipyridine with 1,2-bis(4-pyridyl)ethylene (BPE), to give the title salt, (I).

(I)

Compound (I) forms a planar two-dimensional hydrogenbonded network structure, but the 1:2 molar ratio between the

Figure 1
A packing diagram for (I).
constituents is still maintained (Fig. 2). An important feature of this complex structure is that H -atom transfer from MA to BPE results in the formation of an ionic $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{O}^{-}$ hydrogen bond. Both BPE and MA are individually planar, but with a dihedral angle of $12.1(5)^{\circ}$ between them.

A typical molecular arrangement in each sheet of (I) is shown in Fig. 1 and the hydrogen bonds are listed in Table 1. In each sheet, there are hydrogen bonds between BPE and MA, as well as between adjacent MA molecules, forming linear chains. While BPE and MA interact with each other via $\mathrm{N}^{+}-$ $\mathrm{H} \cdots \mathrm{O}^{-}$hydrogen bonds $[\mathrm{H} \cdots \mathrm{O}=1.70(5) \AA$ A , adjacent MA molecules interact through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{H} \cdots \mathrm{O}=2.55(4) \AA]$. In addition, adjacent chains are held together by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}[\mathrm{H} \cdots \mathrm{O}=2.50(3)$ and $2.60(4) \AA]$ hydrogen bonds.

Examination of the structure of (I) with PLATON (Spek, 1990) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

BPE was prepared following the procedure described by Yam et al. (1998). MA and other reagents were obtained from commercial suppliers and used without further purification. BPE and MA (in a 1:2 molar ratio) were mixed in an $8: 3(v / v)$ solution of acetone

Figure 2

A view of the structure of (I), showing the atom-numbering scheme and 35% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
and ethanol, and heated until they dissolved completely. The resulting solution was evaporated slowly at room temperature for 3 d. After most of the solvent had evaporated, red crystals of (I) were obtained.

> Crystal data
> $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}^{-}$
> $M_{r}=414.36$
> Triclinic, $P \overline{1}$
> $a=5.7148(9) \AA$
> $b=8.6568(8) \AA$
> $c=10.6906(11) \AA$
> $\alpha=108.623(9)^{\circ}$
> $\beta=99.878(15)^{\circ}$
> $\gamma=105.561(13)^{\circ}$
> $V=463.26(10) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.485 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=2.1-25.0^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.60 \times 0.32 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker P4 diffractometer

 ω scansAbsorption correction: empirical
(SHELXTL; Bruker, 1997)
$T_{\text {min }}=0.931, T_{\text {max }}=0.975$
2127 measured reflections
1600 independent reflections
1104 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.023 \\
& \theta_{\max }=25^{\circ} \\
& h=-1 \rightarrow 6 \\
& k=-9 \rightarrow 9 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.188$
$S=1.05$
1600 reflections
168 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0975 P)^{2}\right. \\
& \quad+0.2216 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.72 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}-0.42 \mathrm{e}^{-3} .
$$

Table 1
Hydrogen-bonding and short-contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\mathrm{i}}$	$0.98(4)$	$2.55(4)$	$3.174(5)$	$122(3)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 3^{\mathrm{i}}$	$1.04(5)$	$2.59(5)$	$3.234(5)$	$120(3)$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.95(4)$	$2.55(4)$	$3.412(5)$	$152(3)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\text {iii }}$	$1.00(4)$	$2.43(4)$	$3.404(5)$	$166(3)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	$1.00(4)$	$2.60(4)$	$3.179(5)$	$117(3)$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	$1.06(4)$	$2.50(3)$	$3.169(5)$	$120(2)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4$	$0.97(5)$	$1.70(5)$	$2.673(4)$	$179(4)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3$	$0.97(5)$	$2.61(5)$	$3.245(4)$	$123(4)$
$\mathrm{O} 1-\mathrm{H} \cdots \mathrm{O} 4$	$0.94(5)$	$1.53(5)$	$2.475(4)$	$180(5)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3$	$0.98(4)$	$2.52(4)$	$3.218(5)$	$128(3)$
Symmetry codes: (i) $-x, 1-y, 2-z ;$ (ii) $-x, 2-y, 1-z ;$ (iii) $1-x, 1-y, 1-z$.				

1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 29992590-5) and the Major State Basic Research Development Programme (grant No. G2000078102).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1187). Services for accessing these data are described at the back of the journal.

References

Aakeroy, C. B. \& Seddon, K. R. (1993). Chem. Soc. Rev. pp. 397-407.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Chatterjee, S., Pedireddi, V. R. \& Rao, C. N. R. (1998). Tetrahedron Lett. 39, 2843-2846.
Fredericks, J. R. \& Hamilton, A. D. (1996). Comprehensive Supramolecular Chemistry, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol \& F. Vögtle, pp. 161-180. Oxford: Pergamon.

Siemens (1994). P4 Diffractometer Control Program (Version 2.1) and XSCANS (Version 2.1). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yam, V. W. W., Lau, V. \& Wu, L. X. (1998). J. Chem. Soc. Dalton Trans. pp. 1461-1468.

